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ABSTRACT

It is shown how to construct shock-like time independent
solutions of the electrostatic Vliasov and Poisson Equations in one
dimension. The positive ions are assumed to be at zero temperature.
The electrostatic potential is assumed to increase monotonically
through the shock from zero to & constant value. The most important
feature of the solution 1s a population of trapped electrons in the
shocked plasma. In contrast to time-independent solutions based upon
fluid equations, there is no upper limit on the amplitude of the

shock.
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I. INTRODUCTION

The subject of collisionless shocks occupies an extensive
literature in plasms physics. A review and ’bibliogra.phy are given
by Sagdeev [1966]. Many of the treatments have been concerned with
situations in which the ratio of magnetic to mechanical stress is
sufficiently large that the magnetic field msy be taken to be basic
to the shock structure. Here, we shall be concerned with a different
limit, the purely electrostatic one, which involves no magnetic field
or net electrical currents at all.

Existing electrostatic shock theories are divided by
Sagdeev into two types, "laminar" and "turbulent". In the "laminar”
theories, one starts with a time-independent set of solutions to
whatever dynamical equations are being used. Characteristically one
obtains in this way a shock profile which oscillates indefinitely
with space. The oscillations must be damped if one is to obtaln a
uniform state at infinity. Typically, this is done by the addition
of a small dissipation (e.g., collisions) on a somewhat &d hoc basis.

"Turbulent"” shock theories rely on a high degree of random
| oscillation within the shock front to provide & dissipative mechanism,
thereby at one stroke providing a very appealing physical picture

of the shock, but also putting most of the details of the shock's



structure outside the boundary of those phenomena which are likely

to be analytically manageable in the foreseeable future. (This

remark is predicated on the belief that a satisfactory analytical
theory of plasma turbulence will be at least as hard to come by as

the corresponding theory for hydrodynamic turbulence has proved to be.)

Thg most deteiled and convincing turbulent shock theory to
date is probably that of Tidman [1967]. Proceeding from an assumed
Mott-Smith distribution for the incoming and outgoing plasmas, the
ion-wave instability is regarded as the origin of & spectrum of
electrostatic waves which effects the transition from the upstream
to the downstream state of the plasma. A very complicated set of
dynamical equations results, however, and except for the leading
edge of the shock, one can only conjecture properties of their
solutions.

The present paper attempts nothing so ambitious as a
definitive theory of & collisionless shock transition, or even to
decide in favor of the laminar or turbulent concept. We simply show
here how laminar solutions, which lead to different upstream and down-
stream spatially uniform states, can be constructed entirely within
the time-independent Vlasov framework, without the introduction of
any dissipative mechanism per se. We find that the presence of a

population of trapped electrons (electrons wiﬁh negative total energy,




relative to the zero of electrostatic potential) will permit the
construction of & wide class of shock-like solutions to the time-
independent Vlasov-Poisson system.

It has been realized for seversal years [Bernstein, Greene,
and Kruskal, 1957; Harris, 1957] that trapped particle distributions
provided considerable freedom to construct different time-independent
but spatially varying solutions to the Vlasov-Poisson system. These
results, however, have been to a great extent on a formal level, and
it has been feared that the required trapped particle distributions
may be negative or otherwise physicelly unrealistic. We show that,
at least in the present case, such fear is groundless.

We use, for the gross properties of our shock, experimental
indications provided by the measurements of Andersen, D'Angelo,
Michelsen, and Nielsen [1967] (an earlier and somewhat less clear-cut
experiment in spherical geometry was due to Koopman and Tidman [1967]).
Both this experiment and calculations on nonlinesr ion acoustic waves
[Montgomery, 1967] indicate that the shock is most likely to be present
when the plasma electrons are very hot relative to the ions. We set
the ion tempersture equal to zero. We model the field as that pro-
vided by a monotonically increasing electrostatic potential (see
Figure la). The downstresm (x - - =) plasma is assumed to be at the

higher density.



For present purposes, our problem will be taken to be
determining what sorts of time-independent solutions to the electro-
static collisionless plasma equations exist, subject to the following
restrictions:

(1) The electric field, E(x) = -¢’(x), and the particle
distribution functions depend only on one spatial coordinate (x, say).

(2) The electrostatic potential, ¢(x), is non-negative,

-0 &as x ~ + =, and - ¢ > O monotonically as x = - =,

(3) The positive ions are cold (have no spread in velocity)
and the electrons are at a finite temperature.

(k) The number densities of electrons and (singly-charged)
positive ions are equal at x = + » and at x = - ®, but are larger at
X = - » (downstream from the shock) than at x = + =,

(5) The shock amplitude ¢, is not strong enough to turn
around any of the ions, but a population of "trapped" (negative total
energy) electrons may exist.

Three separate facets of the problem must be considered, the
ion dynamics, the electron dynamics, and Poisson's equation. These are
taken up in the following sections. The general properties of the

solutions are summarized in Section V.



II. ION DYNAMICS

We assume that the electrons and ions both pour in from
X = o with number density n, and particle current - noVO. The ion

velocity ui(x) and number density ni(x) satisfy
ni(x) ui(x) = const. = -n_V_, (1)

by the ion equation of continuity. Since there is no spread in ion
velocities, the velocity u, may be related to v, end o(x) by con-

servation of energy

bog w ) + e ox) = #my v 2, (2)

where m; is the ion mass and e=|e | is the charge.

We assume (mi V02/2) > e @, so the ions pass on across
the shock to the left and have & velocity -V_(1-2 e cpo/mivf))'b
at X = - o,

The charge density of the ions is, from Equations (1) and

(@),

e ni(x) =e no(l -2e cp(x)/mi Voz)-% . (3)



The schematic form of the potential ¢(x) is shown in
Figure la, and the corresponding ion orbit in the ion x, v phase

space is shown in Figure 1lb.



III. ELECTRON DYNAMICS

~The electron thermal energy will be treated as of the same

' and "trapped" electrons

order as e ¢, so in general both "free'
will be involved. By free and trapped, we mean electrons for which

the total energy
2
£=#m, v - e ofx) (%)

is positive or negative, respectively. For ¢(x) of the form chosen,
positive energy electrons will never reverse their sign of v, nega-
tive energy electrons will reverse it exactly once. The separatrix
between the trapped and untrapped parts of the electron phase plane
(shown in Figure lc)is the pair of curves v = % \/ 2e:p(x)/me .

The electron distribution function fe wlll hereafter be

divided into "free" and "trapped" parts:
fe(x’ ‘V) = fef(x" v) + fe‘b(x’ V‘) )

vwhere fe =0if £Z<O a.nd‘fe =0 if £> 0. Both fef and fe‘t will

f t
be functions of I only [Bernstein, Greene, and Kruskal, 1957]. Only

fe ¢ cen be determined by giving its value at x = + «, ahead of the

shock., It appears to be one of the irreducible ambiguities in the
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collisionless shock problem [see, e.g., Morawetz, 1962] that there
remains & degree of arbitrariness in the trapped particle popula.tiqn.
We shall see later, however, that this arbitrary trapped particle
population is what permits shock-like solutions to exist, and that a
wide variety of such solutions can exist with restrictions on the

trapped particle distribution which are not at all severe.

For fef’ it is natural to assume & Mexwellian at X = + «
m, t - m_(v+V )2
lim fef (x, v) = n, exp & ° . (5)
X = o 2nKT KT,

Expressing v in terms of Z, this means that at finite X, we will have

(

-1 v 2
exp = v2- flecp +V

e
: ~ 2
-
e '\/ 2 2ep _
exp SR - v - me Vo
‘ (6)

where the upper and lower expressions apply to the regions v >0

and v < 0 respectively. Equation (6) reduces to Equation (5) as
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¢ ;—:—% 0, and is clearly & function only of the constant of the
motion Z.

The free charge density is, for the electrons,

-e nef(x) =

e -nm 2
T €0, | omET J exp e o2 Ly
e Zﬁe m, o
+\/2e5_/me
m % -v2ecp/me -m 53 2
e e e
I G A A s (VA vl
e - @ e e
(7)

The v-integrations in Equation (7) are complicated but
are simplified by the following observation. We anticipate that
V_ will be of the order of the ion acoustic speed, V KT, /mi . In

fact, we set

v? - WK jny , (8)
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where we expect the "Mach number" M to be somewhat greater than unity,
but not vastly greater. The integrals in Equation (7) come largely
from regions of v where m_(V v2-2ecp/me *+ Vo)2 is of the order of

ICI‘e. Thus most of the contribution comes from a region

\/v2-2eq>/me’__‘_' 0 £ >> v |.

We can then ignore the % V0 in Equation (7) to a first approximation,

and write
m, % e +® - mev2
_enef.(x)=-2eno 2_1?1(—5[': expm;fdv exp EKTe
2e m,

(9)

up to terms of O(M\/h—e ) .
: i
The distribution functions of the free and trapped electrons
are shown schematically in Figure 2a. We purposely leave fet(z)
unspecified at this point. The contribution of fet(E) to the

electron charge density is given by - e net(x), where

O  ae ()
net(X) = net(eCP) = ‘r 2t

-e@ ,’ane(2+ecp)

(10)
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It is clear that since fet(z) 20, D, is alwsys a non-negative
non-decreasing function of eg, as shown in Figure 2b, and that
net(o) = 0, In the special case when there are no trapped electrons,

and only then, Ny will vanish for all ¢.

It is clear that, in fact, ng, n_e and nét are all functions

of the scalar potential ¢ alone, once the distribution functions are

given.
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IV. POISSON'S EQUATION

The remaining problem is the satisfaction of Poisson's
Equation, which, collecting the results of Equations (3), (9), and

(10), becomes

o"(x) =-bme n(l-2 ecp/mi Voa)'%
+Lhne nef(ecp)

+hne net(eq:) . (11)

It is convenient to reduce Equation (10) to dimensionless

form by defining

= &9
b KTe
5 b n e o x2
E—x=
§ KT, (Debye length)e
n_, (eo)
£ = oy) 20,
n, =

and
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(we expect 52 < 2).

With these definitions, Poisson's equation becomes

a®y(€)

ag?

- @-2E s @ ere e aly) . (122)

It is convenient to rewrite (12a) as

T B

where
v(y) = U - AW, (132)
and
‘ 20k o | 0
u(y) = -{2/5%+(2/51(1 - 8°Y)% - J‘O ae(1 - erf y8) e , (13b)

¥
A(Y) = [ o(6) ae . (13¢)
0
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Note that U(0) = O, U'(0) = 0, and U"(Y¥) = o(w"k) for ¥
small and positive. A(Y) is the trapped electron contribution to
U, and is undetermined at this point.

Equation (12b) is now formelly the equation of motion of
a fictitious "particle" of "position" ¥ moﬁng in a "potential"
V(¥). The dimensionless length £ plays the role of the "time".
The solution to this equivalent mechanics problem is well known,
and in what follows we shall use language appropriate to it,
bearing in mind the just-described mathematical correspondences
with the problem at hand (this device appears to have been in-
troduced by Davis, Lust, and Schluter [19581).

Equation (12) has an "energy" integral:

2

d¥ + V(¥) = const. = I, say. (1ka)

This reduces at once to the quadrature

o . 14
j‘m +[V2 ag (14b)

Solutions to Equation (14%) in which Y remains bounded are

clearly only possible if V(¥) = II at the upper and lower bounds of Y
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(in our problem, at ¥ = O and Y = Y, > 0); otherwise ¥ will grow
without bound in one direction or the other. It is equally clear
(see Figure 3a) that V(¥) must be less than II in the interval

0¥ < ‘ifo. Thus the requirements
v(o) = v(y,) (158)
v(0) <v(¥), o0<¥<y (15p)

follow only from the requirement of boundedness.

As noted by Sagdeev [1966], most of the solutions Y(E)
which result from Equations (14%) and (15) are periodic functions of
€ with finite intervel of periodicity. Since we are trying to con-
struct solutions in which ¥ goes monotonically from zero to ‘ifo >0
as E goes from + » to - «, these are of no use.

The only exception to this statement occurs when the

horizontal line V = II intersects V(¥) at local maxima. Exsmination

of the behavior of ¥ near these turning points readily reveals that
for this situation, the interval of periodicity in & becomes infinite,
The way to get ¥ to go from zero to ‘ifo > 0 monotonically as & goes
from + ® to - « is to have this infinite periodicity requirement

fulfilled at both end points of the motion; i.e., to require in



18

addition to Equation (15), that:
(1) v(0) and v(*yo) are local maxima; and

'

(2) m=o0. (16)

Then if Y(E€ = + ») is positive and arbitrarily small, ¥
will approach Yo > 0 monotonically as § - - «», and we will have our
shock-1like solution. This state of affairs is summarized in Figure 3b.

We have now to consider what restrictions are imposed on
the trapped electron distribution by the requirement that V(Y¥) have
the shape shown in Figure 3. It is not obvious at this point that
there even exist values of fet(z) such that V(Y) will have the
appropriate form.

To this'end, it is useful to consider U(Y), which is
what V(Y¥) would be if there were no trapped particles. A numerical
plot of U(Y) for various values of 62 < 2 is shown in Figure 4. It
can be proved with' complete rigor that U(Y¥), U'(Y), and U"(¥) are
alweys positive in the interval 0 < ¥ < 5-2. This shows first of
all that no solutions of the type we are seeking exist for the
case of no trapped particles; trapped electrons are essential.

Attention now focuses on A(Y), the trapped particle
contribution to V(¥). A(Y) is positive, and must be subtracted

off from U(¥) in such a way that



19

(1) A(Y) -U(¥) >0, 0<¥<¥ < 572,

(2) A'(¥)

We already have A'(0)

U'(Yo).

0. If A(Y) can be found which meets these

two requirements, it is clear that V(¥) = U(Y) - A(Y) will in fact

have the form shown in Figure 3, and thus lead to the desired solution.

As seen in Figure 5 for>ab.»typicva.l U(Y), it is geéméﬁrica.lly
obvious that many such A(Y¥)'s (an infinite number,in fact) can be
constructed for which the above two conditions are fulfilled. It is
important also to note that these A(Y)'s may be drawn such that
A'(¥) >0 and A"(¥) >0 for 0 <¥ < Y = the point of intersection.
The fact that A(Y¥) has positive curvature will later be shown to lead
to the guarantee that f_,(¥) be positive semi-definite.

Given any such A(Y), it is now a simple matter to find the
trapped particle distribution which will support it. Taking

a(¥) = A'(¥), and writing Equation (10) in dimensionless variables,

0 def  (e)
B(y) = | R (17)
3 4 e+

where ¢ = Z:/KTe, B(Y) =A'(Y¥) n V ane/KTe . As Bernstein, Greene,
and Kruskal pointed out, Equation (17) is just Abel's equation, if
we choose to regard it as an integral equation for the trapped electron

distribution fe Its solution is

t.
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£ (o) -——\f y —A%e) a6 (18)
-e -9

for

0>¢-= K%L >=-Y = -E%L .

By virture of the positive definiteness of A"(8) noted

above, Equation (18) shows explicity that the trapped electron
distribution is non-negative. (The requirement that A" be
positive is still even unnecessarily stringent, and can be relaxed
considerably. )

Since the dynemical equations end Poisson's equation have
both been solved and the resulting quantities shown to satisfy the
various physical requirements, this completes the problem.* An
infinite number of solutions exist which will take us monotonically
from O to 9, &s x goes from + » to - » , and they differ only in the

functional form of cp(x) that connects the two end points.

*We should note one last requirement on A(Y), which is of little or
no consequence. In order that V(¥) lead to infinite periodicity at
the end points, V(¥) must vary as the square of the quantities |Y |

and | ¥ -¥ | , respectively, at the two end points. This implies that



2l

near ¥ = 0, A(Y) must contain a term which ~ Y3/2 to cancel off
the leading term in U(Y) which also ~ Y3/ 2, It can be readily

shown that this requirement leaves fet well-behaved.
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V. SUMMARY

It has been the purpose of the foregoing calculation to
demonstrate the existence of shock-like electrostatic solutions to
the Vlasov equations and Poisson's equation for cold ions and hot
electrons. The more difficult and profound questions associated with
these solutions — such as their stability and the means by which
they might be formed experimentally — have not been touched. Any
virtue which the solutions may heve probably lies in their tract-
ability and in the fact that they require no ad hoc or unmanageable
dissipative mechanisms to bring the plasma from its upstream state
to its downstream state.

The essential features of the solutions may be sumarized
as follows:

(1) There is a downstream population of negative energy

electrons, with number density

net(- ®) = n, ¥ (0'0)
I - €% -
(o} M2 KTo
ecpo ecPO/KTe
e .
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(2) The amplitude ¢, may have any value up to

KT 2
_ -2 M :
KT, = ‘l’o <é 7, or 9, < = where M is the Mach number in

units of the upstream ion acoustic speed.

e Cpo

~ (3) There is no limitation on the Mach number from above,
which contrasts sharply with the "laminar" solutions based on the
moment equations, which always do have such an amplitude limitation
at relatively low values of the Mach number.
The second of the above restrictions could perhaps be
relaxed by allowing for trapped ions, but this has not been attempted.

It should be noted that the specific entropy current,

ol
I

=z I Yflnfav s 1s the same upstream as downstream, and there
is no production of specific entropy in the sense of classical gas

dynamics.
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FIGURE 1b.

FIGURE lc.

FIGURE 2a.

FIGURE 2b.

FIGURE 3a.
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FIGURE CAPTIONS

General shepe of the time-independent electrostatic
potential for the shock. We do not specify the
detailed shape of o¢(x),

Trajectory in the ion X, v phase pla.nei. The ions are
slowed down, but not turned around, by o(x).

Trajectories in the electron X, v phase plane. Negative
energy, or "trapped", electrons, are confined to the
shaded area. The separatrix is v = + (2eq>/me)%.

The electron distribution as a function of electron
energy. The free electron distribution féf is
determined at x = + «», but the trapped distribution
fe‘c is not. We do not specify fet in detail. fe may
or may not be continuous at T = 0, '

The trapped electron charge density as. & function of
scalar potential. (ecp) must obey Equations (20) of
the text, but is not completely determlned by them.

A "potential"” V(Y) which leads to periodic potential
waves with finite periodicity. The amplitude of the
waves is determined by the intersections of V = I
with V(¥). This V(¥) will not lead to shock-like

solutions. \



FIGURE 3b.

FIGURE L.

FIGURE 5.
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The required form V(Y) must have if ¥ is to go mono-
tonically from ¥ = 0 to ‘i’=‘l’o >0 és E goes from + o
to - », It is important that both V(0) and v(‘{fo) be
local maxima, and be equel. ‘{fo can be any number less
than & 2.

Plot of U(Y) for different values of 6-. Note that
U(Y), U'(¥) and U"(Y) are always > O for 0 < ¥ < &2,

Drawing of & possible A(¥) for a typical U(V¥). A(Y)
can be any function which is > U(¥) in 0 < ¥ < ¥ < 6-2,
and which has A'(Y) and A"(Y) positive in O < ¥ < Y.
A(Y) must heve the same value and slope as u(y) at
Y=Y, and U(Y) - A(Y) must go as a negative constant
times YZ near ¥ = 0; A(Y) is otherwise arbitrary.
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